Add like
Add dislike
Add to saved papers

Cationic peroxidase from proso millet induces human colon cancer cell necroptosis by regulating autocrine TNF-α and RIPK3 demethylation.

Food & Function 2018 March 2
A cationic peroxidase (POD) was purified from proso millet seeds (PmPOD) using ammonium sulfate fractionation, cation exchange, and size exclusion chromatography. The purified PmPOD showed toxicity to normal cells and tumor cells, but was more sensitive in HT29 cells. Furthermore, the mechanism driving HCT116 and HT29 cell death by PmPOD was the induction of receptor interacting protein kinase 1 (RIPK1)- and RIPK3-dependent necroptosis, independent of apoptosis. More importantly, PmPOD could induce tumor necrosis factor-α (TNF-α) production through transcriptional upregulation. In addition, PmPOD could restore RIPK3 expression in HCT116 cells via the demethylation of the RIPK3 genomic sequence. Taken together, these results suggest that two distinct mechanisms are involved in PmPOD-induced necroptosis: the autocrine production of TNF-α and the restoration of RIPK3 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app