Add like
Add dislike
Add to saved papers

Electron ionization mass spectrometry fragmentation and multiple reaction monitoring quantification of bacterial metabolites of the sea ice biomarker proxy IP 25 in Arctic sediments.

RATIONALE: 3,9,13-Trimethyl-6-(1,5-dimethylhexyl)tetradecan-1,2-diol and 2,8,12-trimethyl-5-(1,5-dimethylhexyl)tridecanoic acid appear to be produced during the bacterial metabolism of IP25 , a highly branched isoprenoid lipid often employed for past Arctic sea ice reconstruction. Characterization and quantification of these metabolites in sediments are essential to determine if bacterial degradation may exert a significant influence on IP25 -based palaeo sea ice reconstructions.

METHODS: Electron ionization mass spectrometry (EIMS) fragmentation pathways of 3,9,13-trimethyl-6-(1,5-dimethylhexyl)tetradecan-1,2-diol and 2,8,12-trimethyl-5-(1,5-dimethylhexyl)tridecanoic acid trimethylsilyl (TMS) derivatives were investigated. These pathways were deduced by: (i) low-energy collision-induced dissociation (CID) gas chromatography/tandem mass spectrometry (GC/MS/MS), (ii) accurate mass measurement, and (iii) deuterium labelling.

RESULTS: CID-MS/MS analyses, accurate mass measurement and deuterium-labelling experiments enabled us to elucidate the EIMS fragmentations of 3,9,13-trimethyl-6-(1,5-dimethylhexyl)tetradecan-1,2-diol and 2,8,12-trimethyl-5-(1,5-dimethylhexyl)tridecanoic acid TMS derivatives. Some specific fragment ions useful in addition to chromatographic retention times for further characterization could be identified. As an application of some of the described fragmentations, the TMS derivatives of these metabolites were characterized and quantified in MRM mode in different Arctic sediments.

CONCLUSIONS: EIMS fragmentations of 3,9,13-trimethyl-6-(1,5-dimethylhexyl)tetradecan-1,2-diol and 2,8,12-trimethyl-5-(1,5-dimethylhexyl)tridecanoic acid TMS derivatives exhibit specific fragment ions, which appear to be very useful for the quantification of these bacterial metabolites of the palaeo tracer IP25 in sediments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app