Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Guanidinium export is the primal function of SMR family transporters.

The small multidrug resistance (SMR) family of membrane proteins is prominent because of its rare dual topology architecture, simplicity, and small size. Its best studied member, EmrE, is an important model system in several fields related to membrane protein biology, from evolution to mechanism. But despite decades of work on these multidrug transporters, the native function of the SMR family has remained a mystery, and many highly similar SMR homologs do not transport drugs at all. Here we establish that representative SMR proteins, selected from each of the major clades in the phylogeny, function as guanidinium ion exporters. Drug-exporting SMRs are all clustered in a single minority clade. Using membrane transport experiments, we show that these guanidinium exporters, which we term Gdx, are very selective for guanidinium and strictly and stoichiometrically couple its export with the import of two protons. These findings draw important mechanistic distinctions with the notably promiscuous and weakly coupled drug exporters like EmrE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app