Add like
Add dislike
Add to saved papers

Reduction of Mosquito Abundance Via Indoor Wall Treatments: A Mathematical Model.

Insecticidal indoor residual wall treatment is a major tool for the control of malaria, with the goals of reducing indoor vector density and vector life span, in addition to reducing transmission rates of disease. Dynamics of the malaria vector, Anopheles gambiae, in the Emutete region in the Western Kenya highlands are based on an already existing model in the literature. In this paper, the framework is used to predict vector reduction due to four types of indoor wall treatments: two cases of indoor residual spraying of DDT and two types of pyrethrin-based INESFLY insecticidal paint. These treatments differ primarily in the duration of their persistence on walls. The model shows the extent of suppression of vector abundance over time due to each of the four treatments. It predicts that indoor residual spraying may have no noticeable effect at all if the percent coverage is not high enough or the persistence of the mortality effect is low, but will have a substantial effect at higher coverage rates and/or higher persistence. For treatments with longer persistence of mortality, the model predicts a coverage threshold above which extra treatment has little to no effect. For treatments of short persistence of mortality, the seasonal timing of treatment has a noticeable effect on the duration of vector suppression. Overall, the model supports claims in the literature that wall treatments have the capacity to reduce the vector burden.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app