Add like
Add dislike
Add to saved papers

A versatile method for gene dosage quantification: multiplex PCR and single base extension for copy number and gene-conversion identification of SMN genes.

A comparison of the individual genomes within a species demonstrates that structural variation, including copy number variation (CNV), is a major contributor to phenotypic diversity and evolutionary adaptation. CNVs lead to the under/over-expression of a gene, according to the changes in the gene dosage, which account for the development of a number of genomic disorders. Thus, the development of efficient, rapid and accurate CNV screening is of fundamental importance. We report a method that enables the simultaneous determination of the copy numbers of several different targets as well as the discrimination among highly similar/almost identical targets that differ by only one single nucleotide variant, which establishes their copy numbers. The PCR co-amplification and single-base extension technologies are used to identify the copy number of a target sequence relative to a reference sequence of known genomic copy number in a given sample. This efficient and accurate quantification platform was successfully used to quantify the copy numbers of the primary spinal muscular atrophy-determining gene, SMN1, and the disease modifier gene, SMN2. The reliability, low-cost and potential for high-throughput make our method suitable for screening large populations as well as for use as a tool in clinical settings for genetic diagnosis/prognosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app