Add like
Add dislike
Add to saved papers

A novel method to prepare a magnetic carbon-based adsorbent with sugar-containing water as the carbon source and DETA as the modifying reagent.

A novel magnetic heavy metal adsorbent was prepared via diethylenetriamine (DETA) modification on magnetic hydrothermal carbon, with glucose and sugar-containing waste water as the carbon source. The prepared materials were characterized by FT-IR, SEM, TEM, EDXRF, TGA, elemental analysis, XPS, and magnetic moment determination. In this paper, the adsorption mechanism of the modified and unmodified adsorbents was well discussed. Four kinds of waste water (watermelon juice, expired sprite, sugar-pressing waste water, and confectionary waste water) were employed to produce heavy metal ion adsorbents; the chemical properties of hydrothermal carbon derived from the proposed sources were analyzed as well. The maximum uptake capacity for Cu2+ , Pb2+ , and Cd2+ of the adsorbent produced from glucose was 26.88, 103.09, and 25.38 mg g-1 , respectively. After 5 cycles, the adsorption ability was still well preserved. This work represents an efficient new direction for the treatment of heavy metal ions in water and the reuse of sugar-containing waste water. Graphical abstract The schemetic of DETA-modified magnetic carbon preparing from sugar-containing wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app