Add like
Add dislike
Add to saved papers

Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries.

Nanomaterials 2018 Februrary 29
The three-dimensional (3D) SnS decorated carbon nano-networks (SnS@C) were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g-1 for SnS@C composites can be obtained at 100 mA·g-1 after 100 cycles. Even cycled at a high current density of 2 A·g-1 , the reversible capacity of this composite can be maintained at 610 mAh·g-1 after 1000 cycles. The initial charge capacity for sodium ion batteries can reach 333 mAh·g-1 , and it retains a reversible capacity of 186 mAh·g-1 at 100 mA·g-1 after 100 cycles. The good lithium or sodium storage performances are likely attributed to the synergistic effects of the conductive carbon nano-networks and small SnS nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app