Add like
Add dislike
Add to saved papers

Effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking.

This study aimed to examine whether the triceps surae (TS) muscle-tendon unit (MTU) mechanical properties affect gait stability and its reactive adaptation potential to repeated perturbation exposure in older adults. Thirty-four older adults each experienced eight separate unexpected perturbations during treadmill walking, while a motion capture system was used to determine the margin of stability (MoS) and base of support (BoS). Ankle plantar flexor muscle strength and Achilles tendon (AT) stiffness were analyzed using ultrasonography and dynamometry. A median split and separation boundaries classified the subjects into two groups with GroupStrong ( n = 10) showing higher ankle plantar flexor muscle strength (2.26 ± 0.17 vs. 1.47 ± 0.20 N·m/kg, means ± SD; P < 0.001) and AT stiffness (544 ± 75 vs. 429 ± 86 N/mm; P = 0.004) than GroupWeak ( n = 12). The first perturbation caused a negative ΔMoS (MoS in relation to unperturbed baseline walking) at touchdown of perturbed step (PertR ), indicating an unstable position. GroupStrong required four recovery steps to return to ΔMoS zero level, whereas GroupWeak was unable to return to baseline within the analyzed steps. However, after repeated perturbations, both groups increased ΔMoS at touchdown of PertR with a similar magnitude. Significant correlations between ΔBoS and ΔMoS at touchdown of the first recovery step and TS MTU capacities (0.41 < r < 0.57; 0.006 < P < 0.048) were found. We conclude that older adults with TS muscle weakness have a diminished ability to control gait stability during unexpected perturbations, increasing their fall risk, but that degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations. NEW & NOTEWORTHY Triceps surae muscle weakness and a more compliant Achilles tendon partly limit older adults' ability to effectively enlarge the base of support and recover dynamic stability after an unexpected perturbation during walking, increasing their fall risk. However, the degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app