Add like
Add dislike
Add to saved papers

Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone.

Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3 ), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app