Add like
Add dislike
Add to saved papers

Distinct Carbon Isotope Fractionation Signatures during Biotic and Abiotic Reductive Transformation of Chlordecone.

Chlordecone is a synthetic organochlorine pesticide, extensively used in banana plantations of the French West Indies from 1972 to 1993. Due to its environmental persistence and bioaccumulation, it has dramatic public health and socio-economic impact. Here we describe a method for carbon-directed compound specific isotope analysis (CSIA) for chlordecone and apply it to monitor biotic and abiotic reductive transformation reactions, selected on the basis of their distinct product profiles (polychloroindenes versus lower chlorinated hydrochlordecones). Significant carbon isotopic enrichments were observed for all microbially mediated transformations (εbulk = -6.8‰ with a Citrobacter strain and εbulk = -4.6‰ with a bacterial consortium) and for two abiotic transformations (εbulk = -4.1‰ with zerovalent iron and εbulk = -2.6‰ with sodium sulfide and vitamin B12 ). The reaction with titanium(III) citrate and vitamin B12 , which shows the product profile most similar to that observed in biotic transformation, led to low carbon isotope enrichment (εbulk =-0.8‰). The CSIA protocol was also applied on representative chlordecone formulations previously used in the French West Indies, giving similar chlordecone δ13 C values from -31.1 ± 0.2‰ to -34.2 ± 0.2‰ for all studied samples. This allows the in situ application of CSIA for the assessment of chlordecone persistence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app