Add like
Add dislike
Add to saved papers

Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways.

The mechanical properties, corrosion-resistance, and aesthetics of stainless steel make it one of the most important and widely used materials worldwide in the construction, food, and transportation industries just to name a few. In this paper we demonstrate how these properties can be further enhanced by changing the hydrophilic stainless steel surface to be superhydrophilic, superhydrophobic, or superliquiphobic. Creation of these functional surfaces requires hierarchical roughness and chemistry. Roughness is created using various pathways including sandblasting, chemical etching, and nanocomposite coatings. Surface chemistry is controlled using methylchlorosilane, nanoparticles in methylphenyl silicone, and fluorosilane treatment. The broad approach allows for direct comparisons of these pathways. Resulting treatments can create stainless steel surfaces with a hexadecane contact angle of 155° and tilt angle of 7-10°. Discussions of rust-avoidance and coating through condensation reactions are included. Enhanced properties of self-cleaning behavior, anti-icing behavior, wear resistance, and bending resistance are demonstrated on stainless steel 304 L. Stainless steel 430, which is more corrosion prone than stainless steel 304 L, is then used to demonstrate transferability of the treatments and corrosion resistance imparted through superliquiphobicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app