Add like
Add dislike
Add to saved papers

Initial Inoculation Concentration Does Not Affect Final Bacterial Colonization of In vitro Vascular Conduits.

BACKGROUND: Despite improved peri-operative care, prosthetic graft infections continue to cause substantial morbidity and mortality. Contemporary graft infection models have tested a conduit's infectability using varying concentrations without standardization. Using a static assay in vitro model, we sought to evaluate the impact of inoculation concentration on vascular conduit attachment.

METHODS: The 2-hour and 24-hour attachment of Staphylococcus aureus TCH1516 and Pseudomonas aeruginosa PA01-UW were determined on polytetrafluoroethylene (PTFE), Dacron® , nitinol, cobalt chromium, and Viabahn® (W.L. Gore and Associates, Newark, DE) endoprotheses. Individually and in combination, concentrations at 104 , 105 , 106 , 107 , and 108 were tested on 2-mm sections of each graft. After each time interval, the prosthetics were rinsed to remove non-attached bacteria, sonicated to release the attached bacteria, spiral plated, and then analyzed for the attached concentration.

RESULTS: After two hours, the higher initial inoculation concentration translated into a higher attachment percentage, but the mean attachment percentage was only 14.8% in the 108 group. Pseudomonas aeruginosa had the greatest mean attachment across all material and concentration groups. The sequence of attachment on the conduits followed a constant order: Dacron, PTFE, cobalt, nitinol, and Viabahn with no difference between Dacron and PTFE. Although there were still differences at the 24-hour mark, the median attachment at each concentration was greater than the highest initial concentration (108 ).

CONCLUSIONS: Initial attachment percentage is poor consistently regardless of inoculation concentration, however, Staphylococcus aureus and Pseudomonas aeruginosa are still able to achieve full attachment after 24 hours. A concentration of less than 107 should be used in vascular graft infection models to ensure adequate bacterial attachment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app