Add like
Add dislike
Add to saved papers

Time-dependent effect of phytocannabinoid treatments in fat cells.

The objectives of this paper is to investigate, demonstrate, and compare the mechanism of action of phytocannabinoids as antidiabetic and anti-obesity agents in preadipocytes and adipocytes, relative to rosiglitazone and metformin. Briefly, cannabis extract, Δ9 -tetrahydrocannabinol and cannabidiol (in very low dosages) were shown to promote glucose uptake higher or to equivalent levels, reduce fat accumulation, and reverse the insulin-resistant state of 3T3-L1 cells more effectively, relative to rosiglitazone and metformin. The phytocannabinoids had a more pronounced effect in preadipocytes undifferentiated model rather than the differentiated model. They induced a protective effect at the mitochondrial level by preventing overactivity of the succinate dehydrogenase pathway (p < .01), unlike rosiglitazone, through activation of the glycerol-3-phosphate dehydrogenase shuttling system. An increase in oxygen consumption and an increased expression of beta to alpha adrenoceptors (p < .05) in treated cells were noted. These findings contribute toward understanding the mechanism of action of phytocannabinoids in fat cells and highlight the antidiabetic and anti-obesity properties of various phytocannabinoids that could potentially support the treatment of obesity-related insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app