Add like
Add dislike
Add to saved papers

Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure.

Scientific Reports 2018 Februrary 20
We propose a broadband terahertz absorber consisting of nonstructured graphene loaded with arrays of elliptic dielectric cylinders. The relative bandwidth for the absorption above 90% reaches about 65%. The working mechanism of broad bandwidth mainly comes from two aspects. One is that the nonstructured graphene loaded with elliptic dielectric cylinders provides multiple discrete graphene plasmon resonances with large relative frequency interval. The other is that, for each discrete resonance, there exists a set of continuous plasmon resonances because the width of the dielectric structure varies continuously and gradiently. The broadband terahertz absorber we demonstrate here, based on geometrically gradient dielectric structures and nonstructured graphene, avoids the graphene processing, which shows great potential applications in related devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app