Add like
Add dislike
Add to saved papers

Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO 2 nanowire arrays.

The application of orthopaedic implants is associated with risks of bacterial infection and long-term antibiotic therapy. This problem has led to the study of implants with nano-textured surfaces as a method of inhibiting bacterial adhesion and reducing implant failure due to infection. In this research, various nano-textured surfaces of TiO2 were synthesised using hydrothermal synthesis, by varying NaOH concentration, reaction time and reaction temperature. Their correlations to mechanical, morphological, bactericidal and osteogenic properties of the surfaces were investigated. It was found that high alkaline concentrations produced large nanowire mesh arrays, while short reaction time and low temperature produced comparatively smaller arrays. The highly dense morphology formed at higher NaOH concentrations has resulted in high elastic modulus and hardness values, compared to surfaces produced at lower NaOH concentrations. Viability tests of the TiO2 nanowire array against gram-positive Staphylococcus aureus cells showed a bactericidal efficiency of 54% and 33% after 3 and 18 h, respectively. This nano-textured surface produces an osteoblast cellular metabolic activity of 71% after 24 h, compared to 67% when exposed to a flat Ti control surface. This preliminary work demonstrates an excellent outcome in producing bactericidal surfaces that promoted metabolic activity of human osteoblast cells for potential use in orthopaedic implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app