Add like
Add dislike
Add to saved papers

A Newly Discovered Antifibrotic Pathway Regulated by Two Fatty Acid Receptors: GPR40 and GPR84.

Numerous clinical conditions can lead to organ fibrosis and functional failure. There is a great need for therapies that could effectively target pathophysiological pathways involved in fibrosis. GPR40 and GPR84 are G protein-coupled receptors with free fatty acid ligands and are associated with metabolic and inflammatory disorders. Although GPR40 and GPR84 are involved in diverse physiological processes, no evidence has demonstrated the relevance of GPR40 and GPR84 in fibrosis pathways. Using PBI-4050 (3-pentylbenzeneacetic acid sodium salt), a synthetic analog of a medium-chain fatty acid that displays agonist and antagonist ligand affinity toward GPR40 and GPR84, respectively, we uncovered an antifibrotic pathway involving these receptors. In experiments using Gpr40- and Gpr84-knockout mice in models of kidney fibrosis (unilateral ureteral obstruction, long-term post-acute ischemic injury, and adenine-induced chronic kidney disease), we found that GPR40 is protective and GPR84 is deleterious in these diseases. Moreover, through binding to GPR40 and GPR84, PBI-4050 significantly attenuated fibrosis in many injury contexts, as evidenced by the antifibrotic activity observed in kidney, liver, heart, lung, pancreas, and skin fibrosis models. Therefore, GPR40 and GPR84 may represent promising molecular targets in fibrosis pathways. We conclude that PBI-4050 is a first-in-class compound that may be effective for managing inflammatory and fibrosis-related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app