Add like
Add dislike
Add to saved papers

Regulation of H + -pyrophosphatase by 14-3-3 Proteins from Arabidopsis thaliana.

Plant vacuolar H+ -transporting inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a crucial enzyme that exists on the tonoplast to maintain pH homeostasis across the vacuolar membrane. This enzyme generates proton gradient between cytosol and vacuolar lumen by hydrolysis of a metabolic byproduct, pyrophosphate (PP i ). The regulation of V-PPase at protein level has drawn attentions of many workers for decades, but its mechanism is still unclear. In this work, we show that AVP1, the V-PPase from Arabidopsis thaliana, is a target protein for regulatory 14-3-3 proteins at the vacuolar membrane, and all twelve 14-3-3 isoforms were analyzed for their association with AVP1. In the presence of 14-3-3ν, -µ, -ο, and -ι, both enzymatic activities and its associated proton pumping of AVP1 were increased. Among these 14-3-3 proteins, 14-3-3 µ shows the highest stimulation on coupling efficiency. Furthermore, 14-3-3ν, -µ, -ο, and -ι exerted protection of AVP1 against the inhibition of suicidal substrate PP i at high concentration. Moreover, the thermal profile revealed the presence of 14-3-3ο improves the structural stability of AVP1 against high temperature deterioration. Additionally, the 14-3-3 proteins mitigate the inhibition of Na+ to AVP1. Besides, the binding sites/motifs of AVP1 were identified for each 14-3-3 protein. Taken together, a working model was proposed to elucidate the association of 14-3-3 proteins with AVP1 for stimulation of its enzymatic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app