Read by QxMD icon Read

Journal of Membrane Biology

Karolin Ebert, Maren Ludwig, Kerstin Elisabeth Geillinger, Gina Catalina Schoberth, Jasmin Essenwanger, Jürgen Stolz, Hannelore Daniel, Heiko Witt
Although increased dietary fructose consumption is associated with metabolic impairments, the mechanisms and regulation of intestinal fructose absorption are poorly understood. GLUT5 is considered to be the main intestinal fructose transporter. Other GLUT family members, such as GLUT7 and GLUT9 are also expressed in the intestine and were shown to transport fructose and glucose. A conserved isoleucine-containing motif (NXI) was proposed to be essential for fructose transport capacity of GLUT7 and GLUT9 but also of GLUT2 and GLUT5...
January 12, 2017: Journal of Membrane Biology
Moazur Rahman, Fouzia Ismat, Li Jiao, Jocelyn M Baldwin, David J Sharples, Stephen A Baldwin, Simon G Patching
Escherichia coli glutamate/aspartate-proton symporter GltP is a member of the Dicarboxylate/Amino Acid:Cation Symporter family of secondary active transport proteins. A range of computational, chemical, biochemical and biophysical methods characterised evolutionary relationships, structural features, substrate binding affinities and transport kinetics of wild-type and mutant forms of GltP. Sequence alignments and phylogenetic analysis revealed close homologies of GltP with human glutamate transporters involved in neurotransmission, neutral amino acid transporters and with the archaeal aspartate transporter GltPh...
December 26, 2016: Journal of Membrane Biology
Le Zou, Qilin Peng, Ping Wang, Boting Zhou
Human immunodeficiency virus type I (HIV-1) transactivator of transcription (TAT) is encoded by HIV-1. It is a peptide rich in basic amino acids and belongs to the protein transduction domain family. It has been found that HIV-1 TAT and its core peptide segment TAT47-57 play an important role in promoting the cellular uptake of coupled bioactive macromolecules, such as peptides, proteins, oligonucleotides, and drug molecules. HIV-1 TAT can also significantly increase the soluble expression of extrinsic proteins...
December 8, 2016: Journal of Membrane Biology
Efrath Barta
Long-chain fatty acids cross a few membranes on their way from the capillary blood to the cardiomyocyte cytosol, where they are utilized as an essential source of energy. Details of the transport mechanism across those membranes remained elusive despite decades of laboratory and theoretical work. Here we inspect several optional scenarios for the crossing of the luminal membrane of the endothelial cell, the first barrier that should be crossed: a passive diffusion, facilitation by receptors for albumin and facilitation by fatty acids transporters...
December 3, 2016: Journal of Membrane Biology
N Mehala, L Rajendran, V Meena
A mathematical model developed by Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009), which describes a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose-sensitive composite membrane has been discussed. This theoretical model depicts a system of non-linear non-steady state reaction diffusion equations. These equations have been solved using new approach of homotopy perturbation method and analytical solutions pertaining to the concentrations of glucose, oxygen, and gluconic acid are derived...
November 30, 2016: Journal of Membrane Biology
Ahmad Hassan Butt, Nouman Rasool, Yaser Daanial Khan
Membrane proteins are vital mediating molecules responsible for the interaction of a cell with its surroundings. These proteins are involved in different functionalities such as ferrying of molecules and nutrients across membrane, recognizing foreign bodies, receiving outside signals and translating them into the cell. Membrane proteins play significant role in drug interaction as nearly 50% of the drug targets are membrane proteins. Due to the momentous role of membrane protein in cell activity, computational models able to predict membrane protein with accurate measures bears indispensable importance...
November 19, 2016: Journal of Membrane Biology
Yuri N Antonenko, Anna S Lapashina, Elena A Kotova, Alla A Ramonova, Mikhail M Moisenovich, Igor I Agapov
Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool for investigation of processes accompanied by changes in the mobility of molecules and complexes. In the present work, peak intensity analysis (PIA) in combination with the solution stirring using FCS setup was applied to explore the interaction between fluorescently labeled protein ligands and corresponding receptors located on membranes. In the system composed of biotinylated liposomes and fluorescently labeled streptavidin as a ligand, PIA allowed us to determine the optimum receptor concentration and demonstrate the essential dependence of the binding efficacy on the length of the linker between the biotin group and the polar head group of the lipid...
November 11, 2016: Journal of Membrane Biology
Remigiusz Worch, Zdenek Petrášek, Petra Schwille, Thomas Weidemann
To quantitatively examine the effect of membrane organization on lateral diffusion, we studied fluorescent carbocyanine lipid analogues and EGFP-tagged, single-pass transmembrane proteins in systems of decreasing complexity: (i) the plasma membrane (PM) of living cells, (ii) paraformaldehyde/dithiothreitol-induced giant plasma membrane vesicles (GPMVs), and (iii) giant unilamellar vesicles (GUVs) under physiological buffer conditions. A truncated, signaling-deficient interleukin-4 receptor subunit, showing efficient accumulation in the plasma membrane, served as a model transmembrane protein...
November 8, 2016: Journal of Membrane Biology
Xuan Xiao, Mengjuan Hui, Zi Liu
Antifreeze proteins (AFPs), known as thermal hysteresis proteins, are ice-binding proteins. AFPs have been found in many fields such as in vertebrates, invertebrates, plants, bacteria, and fungi. Although the function of AFPs is common, the sequences and structures of them show a high degree of diversity. AFPs can be adsorbed in ice crystal surface and inhibit the growth of ice crystals in solution. However, the interaction between AFPs and ice crystal is not completely known for human beings. It is vitally significant to propose an automated means as a high-throughput tool to timely identify the AFPs...
December 2016: Journal of Membrane Biology
Hadeel Alobeedallah, Bruce Cornell, Hans Coster
Molecularly tethered lipid bilayer membranes were constructed on a commercially available chemically modified gold substrate. This is a new and promising product that has allowed the construction of very robust lipid bilayers. Very high resolution electrical impedance spectroscopy (EIS) was used to determine the dielectric structure of the lipid bilayers and associated interfaces. The EIS data were modelled in terms of the dielectric substructure using purpose developed software. The hydrophobic region, where the lipid tails are located, was revealed by the EIS in the frequency range of (1-100) Hz and its thickness was calculated from the capacitance of this region and found to be approximately 3-4 nm...
December 2016: Journal of Membrane Biology
Mario Suwalsky, Pablo Zambrano, María José Gallardo, Fernando Villena, Malgorzata Jemiola-Rzeminska, Kazimierz Strzalka
Thimerosal (THI, ethyl-mercury thiosalicylate) is added to vaccines as a preservative; as a consequence, infants may have been exposed to bolus doses of Hg that collectively added up to nominally 200 µg Hg during the first 6 months of life. While several studies report an association between THI-containing vaccines and neurological disorders, other studies do not support the causal relation between THI and autism. With the purpose to understand the molecular mechanisms of the toxic effect of THI it was assayed on human red cells and in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids found in the outer and inner monolayers of the human erythrocyte membrane, respectively...
December 2016: Journal of Membrane Biology
Mamatha M Pillai, J Gopinathan, B Indumathi, Y R Manjoosha, K Santosh Sahanand, B K Dinakar Rai, R Selvakumar, Amitava Bhattacharyya
In this study, silk fibroin nanofibrous scaffolds were developed to investigate the attachment and proliferation of primary human meniscal cells. Silk fibroin (SF)-polyvinyl alcohol (PVA) blended electrospun nanofibrous scaffolds with different blend ratios (2:1, 3:1, and 4:1) were prepared. Morphology of the scaffolds was characterized using atomic force microscopy (AFM). The hybrid nanofibrous mats were crosslinked using 25 % (v/v) glutaraldehyde vapor. In degradation study, the crosslinked nanofiber showed slow degradation of 20 % on weight after 35 days of incubation in simulated body fluid (SBF)...
December 2016: Journal of Membrane Biology
Anatoly Kataev, Olga Zherelova, Valery Grishchenko
Interaction of a HAMLET-like La-OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage-clamp technique was used to study Ca(2+) and Cl(-) transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La-OA complex has an inhibiting effect on Ca(2+) current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane...
December 2016: Journal of Membrane Biology
Carlos de la Haba, Antoni Morros, Paz Martínez, José R Palacio
Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion...
December 2016: Journal of Membrane Biology
Svetlana S Efimova, Anastasiia A Zakharova, Ludmila V Schagina, Olga S Ostroumova
The effects of local anesthetics (LAs), including aminoamides and aminoesters, on the characteristics of single gramicidin A (GA) channels in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers were studied. Aminoamides, namely lidocaine (LDC), prilocaine (PLC), mepivacaine (MPV), and bupivacaine (BPV), reduced the conductance of GA channels. Aminoesters influenced the current fluctuations induced by GA differently; procaine (PC) did not affect the fluctuations, whereas tetracaine (TTC) distinctly reduced the conductance of single GA channels...
December 2016: Journal of Membrane Biology
Ross G Johnson, Hung C Le, Kristen Evenson, Shelby W Loberg, Tori M Myslajek, Andrea Prabhu, Ann-Marie Manley, Colette O'Shea, Haiying Grunenwald, Madelaine Haddican, Patrick M Fitzgerald, Timothy Robinson, Bruno A Cisterna, Juan C Sáez, Tai-Feng Liu, Dale W Laird, Judson D Sheridan
It is now clear that connexin-based, gap junction "hemichannels" in an undocked state are capable of opening and connecting cytoplasm to the extracellular milieu. Varied studies also suggest that such channel activity plays a vital role in diverse cell processes and abnormal hemichannel activity contributes to pathogenesis. To pursue fundamental questions in this area, investigators require methods for studying hemichannel permeability and dynamics that are quantitative, sensitive, versatile, and available to most cellular and molecular laboratories...
December 2016: Journal of Membrane Biology
Mario Suwalsky, José Colina, María José Gallardo, Malgorzata Jemiola-Rzeminska, Kazimierz Strzalka, Marcela Manrique-Moreno, Benjamín Sepúlveda
Gallic acid (GA) is a polyphenol present in many plants. This study was aimed to investigate the molecular interaction of GA with the human erythrocyte membrane and to determine its antioxidant capacity. The molecular interaction with the membrane of human red cells and the antioxidant property was assayed on both human red cells and molecular models of its membrane. Observations by optical, scanning electron, and defocusing microscopy demonstrated that GA is capable to convert red cells from their normal biconcave shape to crenated echinocytes...
December 2016: Journal of Membrane Biology
Lu Lai, Ya-Ping Li, Ping Mei, Wu Chen, Feng-Lei Jiang, Yi Liu
The mitochondrial toxicity induced by GSH-CdTe Quantum dots (QDs) of different sizes was investigated. The decreases in absorbance and transmission electron microscopy images show that QDs induce the swelling of mitochondria. Results of flow cytometry indicate that QDs cause a reduction of mitochondrial membrane potential (MMP). A remarkable increase in fluidity of protein regions of mitochondrial membrane is observed, whereas the lipid regions are not obviously affected. Cyclosporin A (CsA) effectively prevents the QD-induced mitochondrial swelling...
December 2016: Journal of Membrane Biology
Qiongxian Yan, Shaoxun Tang, Xuefeng Han, Musibau Adungbe Bamikole, Chuanshe Zhou, Jinhe Kang, Min Wang, Zhiliang Tan
Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined...
December 2016: Journal of Membrane Biology
Ignat Printsev, Daniel Curiel, Kermit L Carraway
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need...
October 14, 2016: Journal of Membrane Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"