Add like
Add dislike
Add to saved papers

Non-genomic effects of nuclear receptors: insights from the anucleate platelet.

Nuclear receptors (NRs) have the ability to elicit two different kinds of responses, genomic and non-genomic. Although genomic responses control gene expression by influencing the rate of transcription, non-genomic effects occur rapidly and independently of transcriptional regulation. Due to their anucleate nature and mechanistically well-characterized and rapid responses, platelets provide a model system for the study of any non-genomic effects of the NRs. Several NRs have been found to be present in human platelets, and multiple NR agonists have been shown to elicit anti-platelet effects by a variety of mechanisms. The non-genomic functions of NRs vary, including the regulation of kinase and phosphatase activity, ion channel function, intracellular calcium levels, and production of second messengers. Recently, the characterization of mechanisms and identification of novel binding partners of NRs have further strengthened the prospects of developing their ligands into potential therapeutics that offer cardio-protective properties in addition to their other defined genomic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app