Add like
Add dislike
Add to saved papers

Designing a Low-Cost, Single-Supply ECG System for Suppression of Movement Artifact from Contaminated Magnetocardiogram.

SLAS Technology 2018 Februrary 2
Measurement of the late potentials and His-bundle activity is crucial for many clinical studies using the noncontact and noninvasive magnetocardiography (MCG) technique; these weak signals are extracted by averaging many cardiac cycles aligned using the R-peak of the cardiac cycle identified using an electrocardiography (ECG) lead. ECG is measured simultaneously with MCG using a conventional dual-supply ECG amplifier, which requires either two separate batteries or a single battery with a switching voltage inverter circuit for its proper operation. The ECG circuitry based on two separate batteries requires a relatively large voltage supply (-18 to +18 V). The single-supply (low voltage: 0-9 V) ECG circuitry may be implemented using a switching voltage inverter; however, this mode of operation introduces switching noise in the system. The objective of the present work is to overcome these problems by carefully designing a low-voltage, single-supply ECG system, which can be used simultaneously with the MCG setup without introducing a significant level of additional noise in the MCG measurement system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app