Add like
Add dislike
Add to saved papers

Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration.

BACKGROUND AND OBJECTIVE: Although collagen membranes have been clinically applied for guided tissue/bone regeneration for more than 30 years, their in vivo degradation pattern has never been fully clarified. A better understanding of the different stages of in vivo degradation of collagen membranes is extremely important, considering that the biology of bone regeneration requires the presence of a stable and cell/tissue-occlusive barrier during the healing stages in order to ensure a predictable result. Therefore, the aim of this study was to investigate the degradation pattern of a porcine non-cross-linked collagen membrane in an in vivo model of guided bone regeneration (GBR).

MATERIAL AND METHODS: Decalcified and paraffin-embedded specimens from calvarial defects of 18, 10-month-old Wistar rats were used. The defects were treated with a double layer of collagen membrane and a deproteinized bovine bone mineral particulate graft. At 7, 14 and 30 days of healing, qualitative evaluation with scanning electron microscopy and atomic force microscopy, and histomorphometric measurements were performed. Markers of collagenase activity and bone formation were investigated using an immunofluorescence technique.

RESULTS: A significant reduction of membrane thickness was observed from 7 to 30 days of healing, which was associated with progressive loss of collagen alignment, increased collagen remodeling and progressive invasion of woven bone inside the membranes. A limited inflammatory infiltrate was observed at all time points of healing.

CONCLUSION: The collagen membrane investigated was biocompatible and able to promote bone regeneration. However, pronounced signs of degradation were observed starting from day 30. Since successful regeneration is obtained only when cell occlusion and space maintenance exist for the healing time needed by the bone progenitor cells to repopulate the defect, the suitability of collagen membranes in cases where long-lasting barriers are needed needs to be further reviewed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app