Add like
Add dislike
Add to saved papers

Flexible and Micropatternable Triplet-Triplet Annihilation Upconversion Thin Films for Photonic Device Integration and Anticounterfeiting Applications.

Triplet-triplet annihilation upconversion (TTA-UC) has recently drawn widespread interest for its capacity to harvest low-energy photons and to broaden the absorption spectra of photonic devices, such as solar cells. Although conceptually promising, effective integration of TTA-UC materials into practical devices has been difficult due to the diffusive and anoxic conditions required in TTA-UC host media. Of the solid-state host materials investigated, rubbery polymers facilitate the highest TTA-UC efficiency. To date, however, their need for long-term oxygen protection has limited rubbery polymers to rigid film architectures that forfeit their intrinsic flexibility. This study introduces a new multilayer thin-film architecture, in which scalable solution processing techniques are employed to fabricate flexible, photostable, and efficient TTA-UC thin films containing layers of oxygen barrier and host polymers. This breakthrough material design marks a crucial advance toward TTA-UC integration within rigid and flexible devices alike. Moreover, it introduces new opportunities in unexplored applications such as anticounterfeiting. Soft lithography is incorporated into the film fabrication process to pattern TTA-UC host layers with a broad range of high-resolution microscale designs, and superimposing host layers with customized absorption, emission, and patterning ultimately produces proof-of-concept anticounterfeiting labels with advanced excitation-dependent photoluminescent security features.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app