Add like
Add dislike
Add to saved papers

The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells.

The aim of the present study was to investigate the novel mechanisms of forkhead box protein P3 (foxp3) in T regulatory (Treg) cells in lung cancer behavior. Treg cells were isolated from the peripheral blood of healthy volunteers and then co‑cultured with 95D cells. A plasmid overexpressing foxp3 was constructed and transfected into Treg cells and an MTS assay was performed to assess cell viability. Flow cytometry was performed to evaluate cell apoptosis and reverse transcription‑quantitative polymerase chain reaction was used to measure mRNA expression. A Transwell assay was used to assess cell invasion. Treg cells were successfully isolated from peripheral blood with purity of 94.26%. Foxp3 expression in Treg cells was significantly increased following co‑culture with 95D cells, while matrix metalloproteinase‑9 expression was upregulated in 95D cells co‑cultured with Treg cells. The apoptosis, invasion and migration abilities of 95D cells were suppressed by co‑culture with Treg cells, whereas the adhesive ability was enhanced. Foxp3 overexpression in Treg cells enhanced the viability and invasiveness of 95D cells, whereas cell adhesion and migration were decreased. The results of the present study demonstrate that the viability and invasiveness of 95D cells are enhanced by foxp3 overexpression in Treg cells, indicating that increased levels of foxp3 in the tumor microenvironment may promote tumor cell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app