Add like
Add dislike
Add to saved papers

In Situ Grown Epitaxial Heterojunction Exhibits High-Performance Electrocatalytic Water Splitting.

Electrocatalytic performance can be enhanced by engineering a purposely designed nanoheterojunction and fine-tuning the interface electronic structure. Herein a new approach of developing atomic epitaxial in-growth in Co-Ni3 N nanowires array is devised, where a nanoconfinement effect is reinforced at the interface. The Co-Ni3 N heterostructure array is formed by thermal annealing NiCo2 O4 precursor nanowires under an optimized condition, during which the nanowire morphology is retained. The epitaxial in-growth structure of Co-Ni3 N at nanometer scale facilitates the electron transfer between the two different domains at the epitaxial interface, leading to a significant enhancement in catalytic activities for both hydrogen and oxygen evolution reactions (10 and 16 times higher in the respective turn-over frequency compared to Ni3 N-alone nanorods). The interface transfer effect is verified by electronic binding energy shift and density functional theory (DFT) calculations. This nanoconfinement effect occurring during in situ atomic epitaxial in-growth of the two compatible materials shows an effective pathway toward high-performance electrocatalysis and energy storages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app