Add like
Add dislike
Add to saved papers

Identification of an (AC)n microsatellite in the Six1 gene promoter and its effect on production traits in Pietrain × Duroc × Landrace × Yorkshire pigs.

Journal of Animal Science 2018 Februrary 16
The Sine oculis homeobox 1 (Six1) gene is important for skeletal muscle growth and fiber specification; therefore, it is considered as a promising candidate gene that may influence porcine growth and meat quality traits. Nevertheless, the association of Six1 with these processes and the mechanisms regulating its expression remain unclear. The objectives of this study were to identify variant sites of Six1 in different pig breeds, conduct association analysis to evaluate the relationship between polymorphisms of these variants and porcine production traits in Pietrain × Duroc × Landrace × Yorkshire commercial pigs, and explore the potential regulatory mechanisms of Six1 affecting production traits. A total of 12 variants were identified, including 10 single- nucleotide variations (SNVs), 1 insertion- deletion (Indel), and 1 (AC)n microsatellite. Association analysis demonstrated that the SNV, g.1595A>G, was significantly associated with meat color (redness, a*); individuals with the G allele had greater a* values (P < 0.05). Moreover, our results demonstrated that the (AC)n polymorphism in the Six1 promoter was significantly associated with weaning weight (P < 0.05), carcass weight (P < 0.05), and thoracic and lumbar back fat (P < 0.01).In addition, we found that the (AC)n variant was closely related with Six1 expression levels and demonstrated this polymorphism on promoter activity by in vitro experiments. Overall, this study provides novel evidence for elucidating the effects of Six1 on porcine production traits as promising candidate and describes two variants with these traits, which are potential reference markers for pig molecular breeding. In addition, our data on the relationship between porcine Six1 expression and the polymorphic (AC)n microsatellite in its promoter may facilitate similar studies in other species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app