Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MiR-134, epigenetically silenced in gliomas, could mitigate the malignant phenotype by targeting KRAS.

Carcinogenesis 2018 March 9
Gliomas are characterized by a malignant phenotype with proliferation, cell cycle arrest and invasion. To explore the biological consequences of epigenetically regulated miRNAs, we performed a microarray-based screening (whose expression was affected by 5-AZA treatment) followed by bisulfite sequencing validation. We found that miR-134 as an epigenetically regulated suppressor gene with prognostic value in gliomas. MicroRNA-134 was downregulated in high-grade gliomas, especially in GBM samples. Functional studies in vitro and in vivo in mouse models showed that overexpression of miR-134 was sufficient to reduce cell cycle arrest, cell proliferation and invasion. Target analysis and functional assays correlated the malignant phenotype with miR-134 target gene KRAS, an established upstream regulator of ERK and AKT pathways. Overall, our results highlighted a role for miR-134 in explaining the malignant phenotype of gliomas and suggested its relevance as a target to develop for early diagnostics and therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app