Add like
Add dislike
Add to saved papers

Folate-Conjugated Polyphosphoester with Reversible Cross-Linkage and Reduction Sensitivity for Drug Delivery.

To improve the therapeutic efficacy and circulation stability in vivo, we synthesized a new kind of drug delivery carrier based on folic acid conjugated polyphosphoester via the combined reactions of Michael addition polymerization and esterification. The produced amphiphilic polymer, abbreviated as P(EAEP-AP)-LA-FA, could self-assemble into nanoparticles (NPs) with core-shell structure in water and reversible core cross-linked by lipoyl groups. Using the core cross-linked FA-conjugated nanoparticles (CCL-FA NPs) to encapsulate hydrophobic anticancer drug doxorubicin (DOX), we studied the stability of NPs, in vitro drug release, cellular uptake, and targeting intracellular release compared with both un-cross-linked FA-conjugated nanoparticles (UCL-FA NPs) and core cross-linked nanoparticles without FA conjugation (CCL NPs). The results showed that under the condition of pH 7.4, the DOX-loaded CCL-FA NPs could maintain stable over 72 h, and only a little DOX release (∼15%) was observed. However, under the reductive condition (pH 7.4 containing 10 mM GSH), the disulfide-cross-linked core would be broken up and resulted in 90% of DOX release at the same incubation period. The study of methyl thiazolyl tetrazolium (MTT) assay indicated that the DOX-loaded CCL-FA NPs exhibited higher cytotoxicity (IC50 : 0.33 mg L-1 ) against HeLa cells than the DOX-loaded CCL NPs without FA. These results indicate that the core cross-linked FA-conjugated nanoparticles have unique stability and targetability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app