Add like
Add dislike
Add to saved papers

Signaling Mode of the Broad-Spectrum Conserved CO 2 Receptor Is One of the Important Determinants of Odor Valence in Drosophila.

Neuron 2018 March 8
Odor detection involves hundreds of olfactory receptors from diverse families, making modeling of hedonic valence of an odorant difficult, even in Drosophila melanogaster where most receptors have been deorphanised. We demonstrate that a broadly tuned heteromeric receptor that detects CO2 (Gr21a, Gr63a) and other odorants is a key determinant of valence along with a few members of the Odorant receptor family in a T-maze, but not in a trap assay. Gr21a and Gr63a have atypically high amino acid conservation in Dipteran insects, and they use both inhibition and activation to convey positive or negative valence for numerous odorants. Inhibitors elicit a robust Gr63a-dependent attraction, while activators, strong aversion. The attractiveness of inhibitory odorants increases with increasing background CO2 levels, providing a mechanism for behavior modulation in odor blends. In mosquitoes, valence is switched and activation of the orthologous receptor conveys attraction. Reverse chemical ecology enables the identification of inhibitory odorants to reduce attraction of mosquitoes to skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app