Read by QxMD icon Read


Magdalena Martinez-Losa, Tara E Tracy, Keran Ma, Laure Verret, Alexandra Clemente-Perez, Abdullah S Khan, Inma Cobos, Kaitlyn Ho, Li Gan, Lennart Mucke, Manuel Alvarez-Dolado, Jorge J Palop
Inhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD...
March 15, 2018: Neuron
Lei Xiao, Gaurav Chattree, Francisco Garcia Oscos, Mou Cao, Matthew J Wanat, Todd F Roberts
Learning vocal behaviors, like speech and birdsong, is thought to rely on continued performance evaluation. Whether candidate performance evaluation circuits in the brain are sufficient to guide vocal learning is not known. Here, we test the sufficiency of VTA projections to the vocal basal ganglia in singing zebra finches, a songbird species that learns to produce a complex and stereotyped multi-syllabic courtship song during development. We optogenetically manipulate VTA axon terminals in singing birds contingent on how the pitch of an individual song syllable is naturally performed...
March 14, 2018: Neuron
Damiano Zanini, Diego Giraldo, Ben Warren, Radoslaw Katana, Marta Andrés, Suneel Reddy, Stephanie Pauls, Nicola Schwedhelm-Domeyer, Bart R H Geurten, Martin C Göpfert
Animals rely on mechanosensory feedback from proprioceptors to control locomotory body movements. Unexpectedly, we found that this movement control requires visual opsins. Disrupting the Drosophila opsins NINAE or Rh6 impaired larval locomotion and body contractions, independently of light and vision. Opsins were detected in chordotonal proprioceptors along the larval body, localizing to their ciliated dendrites. Loss of opsins impaired mechanically evoked proprioceptor spiking and cilium ultrastructure. Without NINAE or Rh6, NOMPC mechanotransduction channels leaked from proprioceptor cilia and ciliary Inactive (Iav) channels partly disappeared...
March 8, 2018: Neuron
Mateo Vélez-Fort, Edward F Bracey, Sepiedeh Keshavarzi, Charly V Rousseau, Lee Cossell, Stephen C Lenzi, Molly Strom, Troy W Margrie
To interpret visual-motion events, the underlying computation must involve internal reference to the motion status of the observer's head. We show here that layer 6 (L6) principal neurons in mouse primary visual cortex (V1) receive a diffuse, vestibular-mediated synaptic input that signals the angular velocity of horizontal rotation. Behavioral and theoretical experiments indicate that these inputs, distributed over a network of 100 L6 neurons, provide both a reliable estimate and, therefore, physiological separation of head-velocity signals...
March 8, 2018: Neuron
Xuchen Zhang, Qian Li, Lianzhang Wang, Zhong-Jian Liu, Yi Zhong
Active forgetting explains the intrinsic instability of a labile memory lasting for hours. However, how such memory maintains stability against unwanted disruption is not completely understood. Here, we report a learning-activated active protection mechanism that enables labile memory to resist disruptive sensory experiences in Drosophila. Aversive olfactory conditioning activates mitogen-activated protein kinase (MAPK) transiently in the mushroom-body γ lobe, where labile-aversive memory is stored. This increased MAPK activity significantly prolongs labile memory retention and enhances its resistance to disruption induced by heat shock, electric shock, or odor reactivation...
March 7, 2018: Neuron
Maxime W C Rousseaux, Tyler Tschumperlin, Hsiang-Chih Lu, Elizabeth P Lackey, Vitaliy V Bondar, Ying-Wooi Wan, Qiumin Tan, Carolyn J Adamski, Jillian Friedrich, Kirk Twaroski, Weili Chen, Jakub Tolar, Christine Henzler, Ajay Sharma, Aleksandar Bajić, Tao Lin, Lisa Duvick, Zhandong Liu, Roy V Sillitoe, Huda Y Zoghbi, Harry T Orr
Polyglutamine (polyQ) diseases are caused by expansion of translated CAG repeats in distinct genes leading to altered protein function. In spinocerebellar ataxia type 1 (SCA1), a gain of function of polyQ-expanded ataxin-1 (ATXN1) contributes to cerebellar pathology. The extent to which cerebellar toxicity depends on its cognate partner capicua (CIC), versus other interactors, remains unclear. It is also not established whether loss of the ATXN1-CIC complex in the cerebellum contributes to disease pathogenesis...
March 7, 2018: Neuron
Wenqin Hu, Bruce P Bean
Voltage-dependent conductances not only drive action potentials but also help regulate neuronal resting potential. We found differential regulation of resting potential in the proximal axon of layer 5 pyramidal neurons compared to the soma. Axonal resting potential was more negative than the soma, reflecting differential control by multiple voltage-dependent channels, including sodium channels, Cav3 channels, Kv7 channels, and HCN channels. Kv7 current is highly localized to the axon and HCN current to the soma and dendrite...
March 3, 2018: Neuron
Michael B Manookin, Sara S Patterson, Conor M Linehan
Considerable theoretical and experimental effort has been dedicated to understanding how neural circuits detect visual motion. In primates, much is known about the cortical circuits that contribute to motion processing, but the role of the retina in this fundamental neural computation is poorly understood. Here, we used a combination of extracellular and whole-cell recording to test for motion sensitivity in the two main classes of output neurons in the primate retina-midget (parvocellular-projecting) and parasol (magnocellular-projecting) ganglion cells...
February 27, 2018: Neuron
Thomas Zhihao Luo, John H R Maunsell
Visual attention is associated with neuronal changes across the brain, and these widespread signals are generally assumed to underlie a unitary mechanism of attention. However, using signal detection theory, attention-related effects on performance can be partitioned into changes in either the subject's criterion or sensitivity. Neuronal modulations associated with only sensitivity changes were previously observed in visual cortex, raising questions about which structures mediate attention-related changes in criterion and whether individual neurons are involved in multiple components of attention...
February 23, 2018: Neuron
Wei Cao, Shen Lin, Qiang-Qiang Xia, Yong-Lan Du, Qian Yang, Meng-Ying Zhang, Yi-Qing Lu, Jing Xu, Shu-Min Duan, Xia Jun, Guoping Feng, Junyu Xu, Jian-Hong Luo
Neuroligins (NLs) are critical for synapse formation and function. NL3 R451C is an autism-associated mutation. NL3 R451C knockin (KI) mice exhibit autistic behavioral abnormalities, including social novelty deficits. However, neither the brain regions involved in social novelty nor the underlying mechanisms are clearly understood. Here, we found decreased excitability of fast-spiking interneurons and dysfunction of gamma oscillation in the medial prefrontal cortex (mPFC), which contributed to the social novelty deficit in the KI mice...
February 22, 2018: Neuron
Ryan M Neely, Aaron C Koralek, Vivek R Athalye, Rui M Costa, Jose M Carmena
Animals acquire behaviors through instrumental conditioning. Brain-machine interfaces have used instrumental conditioning to reinforce patterns of neural activity directly, especially in frontal and motor cortices, which are a rich source of signals for voluntary action. However, evidence suggests that activity in primary sensory cortices may also reflect internally driven processes, instead of purely encoding antecedent stimuli. Here, we show that rats and mice can learn to produce arbitrary patterns of neural activity in their primary visual cortex to control an auditory cursor and obtain reward...
February 22, 2018: Neuron
Ying Liu, Tuhin Bhowmick, Yiqiong Liu, Xuefan Gao, Haydyn D T Mertens, Dmitri I Svergun, Junyu Xiao, Yan Zhang, Jia-Huai Wang, Rob Meijers
Axon guidance involves the spatiotemporal interplay between guidance cues and membrane-bound cell-surface receptors, present on the growth cone of the axon. Netrin-1 is a prototypical guidance cue that binds to deleted in colorectal cancer (DCC), and it has been proposed that the guidance cue Draxin modulates this interaction. Here, we present structural snapshots of Draxin/DCC and Draxin/Netrin-1 complexes, revealing a triangular relationship that affects Netrin-mediated haptotaxis and fasciculation. Draxin interacts with DCC through the N-terminal four immunoglobulin domains, and Netrin-1 through the EGF-3 domain, in the same region where DCC binds...
February 20, 2018: Neuron
Marina Mikhaylova, Julia Bär, Bas van Bommel, Philipp Schätzle, PingAn YuanXiang, Rajeev Raman, Johannes Hradsky, Anja Konietzny, Egor Y Loktionov, Pasham Parameshwar Reddy, Jeffrey Lopez-Rojas, Christina Spilker, Oliver Kobler, Syed Ahsan Raza, Oliver Stork, Casper C Hoogenraad, Michael R Kreutz
Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+ -transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+ ]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding...
February 20, 2018: Neuron
Stefania Tavano, Elena Taverna, Nereo Kalebic, Christiane Haffner, Takashi Namba, Andreas Dahl, Michaela Wilsch-Bräuninger, Judith T M L Paridaen, Wieland B Huttner
Delamination of neural progenitor cells (NPCs) from the ventricular surface is a crucial prerequisite to form the subventricular zone, the germinal layer linked to the expansion of the mammalian neocortex in development and evolution. Here, we dissect the molecular mechanism by which the transcription factor Insm1 promotes the generation of basal progenitors (BPs). Insm1 protein is most highly expressed in newborn BPs in mouse and human developing neocortex. Forced Insm1 expression in embryonic mouse neocortex causes NPC delamination, converting apical to basal radial glia...
February 19, 2018: Neuron
Alexandra K Moore, Aldis P Weible, Timothy S Balmer, Laurence O Trussell, Michael Wehr
Excitation is balanced by inhibition to cortical neurons across a wide range of conditions. To understand how this relationship is maintained, we broadly suppressed the activity of parvalbumin-expressing (PV+ ) inhibitory neurons and asked how this affected the balance of excitation and inhibition throughout auditory cortex. Activating archaerhodopsin in PV+ neurons effectively suppressed them in layer 4. However, the resulting increase in excitation outweighed Arch suppression and produced a net increase in PV+  activity in downstream layers...
February 16, 2018: Neuron
Christian J Peters, John M Gilchrist, Jason Tien, Neville P Bethel, Lijun Qi, Tingxu Chen, Lynn Wang, Yuh Nung Jan, Michael Grabe, Lily Y Jan
Calcium-activated chloride channels (CaCCs) formed by TMEM16A or TMEM16B are broadly expressed in the nervous system, smooth muscles, exocrine glands, and other tissues. With two calcium-binding sites and a pore within each monomer, the dimeric CaCC exhibits voltage-dependent calcium sensitivity. Channel activity also depends on the identity of permeant anions. To understand how CaCC regulates neuronal signaling and how CaCC is, in turn, modulated by neuronal activity, we examined the molecular basis of CaCC gating...
February 16, 2018: Neuron
Lupeng Wang, Krsna V Rangarajan, Charles R Gerfen, Richard J Krauzlis
The basal ganglia are implicated in perceptual decision-making, although their specific contributions remain unclear. Here, we tested the causal role of the basal ganglia by manipulating neuronal activity in the dorsal striatum of mice performing a visual orientation-change detection (yes/no) task. Brief unilateral optogenetic stimulation caused large changes in task performance, shifting psychometric curves upward by increasing the probability of "yes" responses with only minor changes in sensitivity...
February 14, 2018: Neuron
Kai-Siang Chen, Min Xu, Zhe Zhang, Wei-Cheng Chang, Thomas Gaj, David V Schaffer, Yang Dan
Rapid eye movement (REM) and non-REM (NREM) sleep are controlled by specific neuronal circuits. Here we show that galanin-expressing GABAergic neurons in the dorsomedial hypothalamus (DMH) comprise separate subpopulations with opposing effects on REM versus NREM sleep. Microendoscopic calcium imaging revealed diverse sleep-wake activity of DMH GABAergic neurons, but the galanin-expressing subset falls into two distinct groups, either selectively activated (REM-on) or suppressed (REM-off) during REM sleep. Retrogradely labeled, preoptic area (POA)-projecting galaninergic neurons are REM-off, whereas the raphe pallidus (RPA)-projecting neurons are primarily REM-on...
February 14, 2018: Neuron
Saurabh Vyas, Nir Even-Chen, Sergey D Stavisky, Stephen I Ryu, Paul Nuyujukian, Krishna V Shenoy
Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity...
February 13, 2018: Neuron
Ana González-Rueda, Victor Pedrosa, Rachael C Feord, Claudia Clopath, Ole Paulsen
Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo...
February 12, 2018: Neuron
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"