Add like
Add dislike
Add to saved papers

LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals.

Scientific Reports 2018 Februrary 10
Laminin subunit beta-3 (LAMB3) encodes one of the three subunits of LM-332, a protein of the extracellular matrix secreted by cultured human keratinocytes. While LAMB3 is involved in the invasive and metastatic abilities of several tumor types, including those found in the colon, pancreas, lung, cervix, stomach, and prostate, its mechanism of action in thyroid cancer has not been investigated previously. Our results show that LAMB3 is up-regulated in papillary thyroid cancer, and that its suppression reduces cell migration/invasion via down-regulation of epithelial‒mesenchymal transition-associated proteins (N-cadherin, vimentin, slug) and inhibition of matrix metalloproteinase 9. LAMB3 suppression also significantly decreases Akt phosphorylation and inhibits the transcription of c-MET, reducing its activation. These results suggest that LAMB3 leads to tumor invasion via Akt activation induced by the HGF/c-MET axis in papillary thyroid cancer cells. Our findings reveal a novel mechanism of action for LAMB3 in papillary thyroid cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app