Add like
Add dislike
Add to saved papers

In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species-A source of innovative phytopharmaceuticals from nature.

Phytomedicine 2018 January 2
BACKGROUND: Halophytes are considered as valuable sources of traditional drugs in different countries.

PURPOSE: The present study aimed to evaluate biological and chemical fingerprints of three halophytes (Arthrocnemum macrostachyum (Moric.) C, Koch, Halimione portulacoides (L.) Aellen and Salicornia europaea L.).

MATERIALS AND METHODS: The antioxidant and enzymatic inhibitory potential (acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, and tyrosinase) were assessed. The total phenolic, flavonoid contents, and the chemical profiles were appraised using the ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Molecular docking was conducted to provide additional insights of molecular interactions of the enzymes/phytochemicals.

RESULTS: Ethyl acetate extract was the most efficient extract, with A. macrostachyum being the most potent towards DPPH and ABTS radicals and phosphomolybdenum assay. Ethyl acetate extract of A. macrostachyum was also the best reducing agent (CUPRAC and FRAP assays). Methanol and ethyl acetate extract of A. macrostachyum, H. portulacoides, and S. europaea showed significant enzyme inhibition potential. Ethyl acetate extract of A. macrostachyum showed the highest total phenolic (29.54 ± 0.78 mgGAEs/g extract) while the ethyl acetate extract of S. europaea was more abundant in flavonoids (18.26 ± 0.11 mgREs/g extract). Phytochemical profiling allowed the identification of several components in the methanolic extracts (16 in A. macrostachyum, 14 in H. portulacoides, and 11 in S. europaea), with quinic acid, p-coumaric acid, and rhamnetin being most abundant. Docking studies revealed that the above compounds showed scores for the enzymes tested.

CONCLUSION: The three halophytes studies could be considered as potential sources of biologically-active compounds for novel phytopharmaceuticals development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app