Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Optimal compressed representation of high throughput sequence data via light assembly.

Nature Communications 2018 Februrary 9
The most effective genomic data compression methods either assemble reads into contigs, or replace them with their alignment positions on a reference genome. Such methods require significant computational resources, but faster alternatives that avoid using explicit or de novo-constructed references fail to match their performance. Here, we introduce a new reference-free compressed representation for genomic data based on light de novo assembly of reads, where each read is represented as a node in a (compact) trie. We show how to efficiently build such tries to compactly represent reads and demonstrate that among all methods using this representation (including all de novo assembly based methods), our method achieves the shortest possible output. We also provide an lower bound on the compression rate achievable on uniformly sampled genomic read data, which is approximated by our method well. Our method significantly improves the compression performance of alternatives without compromising speed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app