Add like
Add dislike
Add to saved papers

Targeting Sirtuins: Substrate Specificity and Inhibitor Design.

Lysine residues across the proteome are modified by posttranslational modifications (PTMs) that significantly enhance the structural and functional diversity of proteins. For lysine, the most abundant PTM is ɛ-N-acetyllysine (Kac), which plays numerous roles in regulation of important cellular functions, such as gene expression (epigenetic effects) and metabolism. A family of enzymes, namely histone deacetylases (HDACs), removes these PTMs. A subset of these enzymes, the sirtuins (SIRTs), represent class III HDAC and, unlike the rest of the family, these hydrolases are NAD+ -dependent. Although initially described as deacetylases, alternative deacylase functions for sirtuins have been reported, which expands the potential cellular roles of this class of enzymes. Currently, sirtuins are investigated as therapeutic targets for the treatment of diseases that span from cancers to neurodegenerative disorders. In the present book chapter, we review and discuss the current literature on novel ɛ-N-acyllysine PTMs, targeted by sirtuins, as well as mechanism-based sirtuin inhibitors inspired by their substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app