Add like
Add dislike
Add to saved papers

Long-term evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model.

Long-term results of implants in small animal models can be used to optimize the design of grafts to further promote tissue regeneration. In previous study, we fabricated a poly(ɛ-caprolactone) (PCL) bi-layered vascular graft consisting of an internal layer with circumferentially aligned microfibers and an external layer with random nanofibers. The circumferentially oriented vascular smooth muscle cells (VSMCs) were successfully regenerated after the grafts were implanted in rat abdominal aorta for 3 months. Here we investigated the long-term (18 months) performance of the bi-layered grafts in the same model. All the grafts were patent. No thrombosis, aneurysm, or stenosis occurred. The endothelium maintained complete. However, most of circumferentially oriented VSMCs migrated to luminal surface of the grafts to form a neointima with uniform thickness. Accordingly, extracellular matrix including collagen, elastin, and glycosaminoglycan displayed high density in neointima layer while with low density in the grafts wall because of the incomplete degradation of PCL. A small amounts of calcification occurred in the grafts. The contraction and relaxation function of regenerated neoartery almost disappeared. These data indicated that based on the structure design, many other factors of grafts should be considered to achieve the regenerated neoartery similar to the native vessels after long-term implantation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2596-2604, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app