Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mid-gestational sevoflurane exposure inhibits fetal neural stem cell proliferation and impairs postnatal learning and memory function in a dose-dependent manner.

Developmental Biology 2018 March 16
Advancements in fetal intervention procedures have led to increases in the number of pregnant women undergoing general anesthesia during the second trimester-a period characterized by extensive proliferation of fetal neural stem cells (NSCs). However, few studies have investigated the effects of mid-gestational sevoflurane exposure on fetal NSC proliferation or postnatal learning and memory function. In the present study, pregnant rats were randomly assigned to a control group (C group), a low sevoflurane concentration group (2%; L group), a high sevoflurane concentration group (3.5%; H group), a high sevoflurane concentration plus lithium chloride group (H + Li group), and a lithium chloride group (Li group) at gestational day 14. Rats received different concentrations of sevoflurane anesthesia for 2 h. The offspring rats were weaned at 28 days for behavioral testing (i.e., Morris Water Maze [MWM]), and fetal brains or postnatal hippocampal tissues were harvested for immunofluorescence staining, real-time PCR, and Western blotting analyses in order to determine the effect of sevoflurane exposure on NSC proliferation and the Wnt/β-catenin signaling pathway. Our results indicated that maternal exposure to 3.5% sevoflurane (H group) during the mid-gestational period impaired the performance of offspring rats in the MWM test, reduced NSC proliferation, and increased protein levels of fetal glycogen synthase kinase-3 beta (GSK-3β). Such treatment also decreased levels of β-catenin protein, CD44 RNA, and Cyclin D1 RNA relative to those observed in the C group. However, these effects were transiently attenuated by treatment with lithium chloride. Conversely, maternal exposure to 2% sevoflurane (L group) did not influence NSC proliferation or the Wnt signaling pathway. Our results suggest that sevoflurane exposure during the second trimester inhibits fetal NSC proliferation via the Wnt/β-catenin pathway and impairs postnatal learning and memory function in a dose-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app