Add like
Add dislike
Add to saved papers

Increasing the Time Resolution of Single-Molecule Experiments with Bayesian Inference.

Biophysical Journal 2018 January 24
Many time-resolved single-molecule biophysics experiments seek to characterize the kinetics of biomolecular systems exhibiting dynamics that challenge the time resolution of the given technique. Here, we present a general, computational approach to this problem that employs Bayesian inference to learn the underlying dynamics of such systems, even when they are much faster than the time resolution of the experimental technique being used. By accurately and precisely inferring rate constants, our Bayesian inference for the analysis of subtemporal resolution dynamics approach effectively enables the experimenter to super-resolve the poorly resolved dynamics that are present in their data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app