Journal Article
Review
Add like
Add dislike
Add to saved papers

Human and mouse artificial chromosome technologies for studies of pharmacokinetics and toxicokinetics.

In the earliest stage of drug discovery/development, various cell-based models and animal models were used for the prediction of human pharmacokinetics and toxicokinetics. Unfortunately, drugs under development are often discontinued because their nonclinical results do not extrapolate to human clinical studies in relation to either safety or efficacy. Therefore, it is important to improve the time- and cost-effectiveness of drug development. This might be achieved by developing new technologies including pharmacokinetics and toxicokinetics models that use human and mouse artificial chromosome vectors (HACs/MACs). HACs/MACs are unique vectors with several advantages: 1) independent maintenance, 2) defined copy number and mitotically stable, 3) no silencing of the transgene, and 4) no limitation of DNA insertion size. This review provides information on the advantages and examples of the utility of various models based on the recent advances in HAC/MAC technologies, including multifunctional cell-based models for assaying drug-drug interactions, bidirectional permeability, and cytotoxicity, as well as fully genetically humanized mouse models. We also discuss the future prospects of these technologies to advance drug discovery. In summary, these technologies offer advantages over current conventional models and should improve the success rate of drug development related to efficacy and safety for humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app