Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A finite element modeling study of peripheral nerve recruitment by percutaneous tibial nerve stimulation in the human lower leg.

Percutaneous tibial nerve stimulation (PTNS) is a clinical therapy for treating overactive bladder (OAB), where an un-insulated stainless steel needle electrode is used to target electrically the tibial nerve (TN) in the lower leg. Recent studies in anesthetized animals not only confirm that bladder-inhibitory reflexes can be evoked by stimulating the TN, but this reflex can also be evoked by stimulating the adjacent saphenous nerve (SAFN). Although cadaver studies indicate that the TN and major SAFN branch(es) overlap at the location of stimulation, the extent to which SAFN branches are co-activated is unknown. In this study, we constructed a finite element model of the human lower leg and applied a numeric axon model (MRG model) to simulate the electrical recruitment of TN and SAFN fibers during PTNS. The model showed that up to 80% of SAFN fibers (located at the level of the needle electrode) can be co-activated when electrical pulses are applied at the TN activation threshold, the standard therapeutic amplitude. Both the location of the inserted electrode and stimulation amplitude were important variables that affected the recruitment of SAFN branches. This study suggests further work is needed to investigate the potential therapeutic effects of SAFN stimulation in OAB patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app