Add like
Add dislike
Add to saved papers

Ultrasound-enhanced electrokinetic remediation for removal of Zn, Pb, Cu and Cd in municipal solid waste incineration fly ashes.

Low-frequency ultrasound generated by a transducer was investigated to activate the raw municipal solid waste incineration (MSWI) fly ashes in the electrokinetic process, aiming at enhancing heavy metal (HM) removal and achieving better remedial efficacy. The maximum removal efficiencies of 69.84%, 64.24%, 67.74% and 59.93% were obtained in the orthogonal tests of ultrasonication for Zn, Pb, Cu and Cd, respectively. The acoustic time of 30 min and controlling temperature of 45 °C in the operating parameters were quantitatively determined to optimize the ultrasonication of the MSWI fly ash matrices. The changes of acoustic time had a significant effect on the extraction efficiencies of all the four heavy metal elements in the sonication optimal experiments. The longer running time was preferred for the pretreatment of the fly ashes in according to the marginal mean removal results. The voltage gradient of 2 V/cm was most likely to improve the removals of four HMs during the electrokinetics in the range of 0.5-2 V/cm. The synergetic application of acidification and ultrasonication for the media treatment was demonstrated to be most effective in enhancing the remedial efficiencies in the further electrokinetic experiments compared with the other activation systems. Correspondingly, the leaching concentrations of Zn, Pb, Cu and Cd in the samples were reduced by 85.92%, 98.22%, 88.53% and 98.34%, respectively. The contaminants were continuously extracted from the solid grains of the fly ashes by the protonic attack and bubble implosion. The obtained risk-assessment-code values indicated the adoption of AUS-EKR system reduced the environmental toxicity for the fly ashes to the maximum extent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app