Add like
Add dislike
Add to saved papers

Paste structure and rheological properties of lotus seed starch-glycerin monostearate complexes formed by high-pressure homogenization.

Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization (HPH) process, and the effect of HPH on the paste structure and rheological properties of LS-GMS was investigated. Rapid Visco Analyser (RVA) profiles showed that HPH treatment inhibited the formation of the second viscosity peak of the LS-GMS paste, and the extent of this change was dependent on the level of homogenized pressure. Analysis of the size-exclusion chromatography, light microscopy, and low-field 1 H nuclear magnetic resonance results revealed that high homogenized pressure (70-100MPa) decreased molecular weight and size by degrading the branch structure of amylopectin; however, intact LS-GMS granules can optimize the network structure by filler-matrix interaction, which causes free water to transition into immobile water in the starch paste. The steady-shear results showed that the LS-GMS pastes presented non-Newtonian shear-thinning behavior, with higher homogenized pressure producing a smaller hysteresis loop area. During the oscillation process, the LS-GMS pastes prepared at 100MPa exhibited the lowest loss tangent values in all the complexes, indicating a stronger resistance to vibration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app