Add like
Add dislike
Add to saved papers

Surface Enrichment and Depletion of the Active Ingredient in Spray Dried Amorphous Solid Dispersions.

Pharmaceutical Research 2018 January 30
PURPOSE: To study the effects of physicochemical properties of drug and polymer, as well as the drug-polymer interactions, on the surface composition of SDDs.

METHODS: Ethanol solutions containing a model drug (IMC, NMP or FCZ) and a model polymer (PVPK12, PVPK30 or PVP-VA) were spray dried, and the surface composition of SDDs was analyzed by XPS. The surface tensions of pure components and their solutions were measured using Wilhelmy plate and/or calculated using ACD/Labs. NMR and DLS were used to obtain the diffusion coefficients of IMC, NMP, PVPK12 and PVPK30 in solvents. Flory-Huggins interaction parameters for selected drug-polymer pairs were obtained using a melting point depression method.

RESULTS: Significant surface enrichment or depletion of the drug was observed in SDDs depending on the particular drug-polymer combination. With PVP as the dispersion polymer, IMC and NMP were surface enriched; whereas FCZ, a hydrophilic drug, was surface depleted. With increasing PVP molecular weight, the surface drug concentration increased, and the effect was greater in the NMP/PVP and FCZ/PVP systems than in the IMC/PVP system where strong drug-polymer interaction existed. Changing the polymer from PVP to PVP-VA reduced the surface concentration of the drug.

CONCLUSIONS: The surface concentration of a SDD can be significantly different from the bulk concentration. The main results of this work are consistent with the notion that the relative surface tensions control surface enrichment or depletion. Besides, the relative diffusion rates of the components and the strength of their interactions may also affect the surface composition of the SDDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app