Add like
Add dislike
Add to saved papers

Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens.

Bioinformatics has revealed the presence of putative laccase genes in diverse bacteria, including extremophiles, autotrophs, and, interestingly, anaerobes. Integrity of laccase genes in anaerobes has been questioned, since laccases oxidize a variety of compounds using molecular oxygen as the electron acceptor. The genome of the anaerobe Geobacter metallireducens GS-15 contains five genes for laccase-like multicopper oxidases. In order to show whether one of the predicted genes encodes a functional laccase, the protein encoded by GMET_RS10855 was heterologously expressed in Escherichia coli cells. The His6 -tagged enzyme (named GeoLacc) was purified to a large extent in the apoprotein, inactive form: incubation with CuSO4 allowed a 43-fold increase of the specific activity yielding a metallo-enzyme. The purified enzyme oxidized some of the typical laccase substrates, including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, and 2,6-dimethoxyphenol (2,6-DMP), along with pyrogallol and K4 [Fe(CN)6 ]. Temperature optimum was 75 °C and pH optimum for ABTS and 2,6-DMP oxidation was ~ 6.0. As observed for other laccases, the enzyme was inhibited by halide anions and was sensitive to increasing concentrations of dimethyl sulfoxide and Tween-80. Notably, GeoLacc possesses a very high affinity for dioxygen: a similar activity was measured performing the reaction at air-saturated or microaerophilic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app