Add like
Add dislike
Add to saved papers

Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.

Biomicrofluidics 2018 January
The field of complex microfluidic channels is rapidly expanding toward channels with variable cross-sections (i.e., beyond simple rounded channels with a constant diameter), as well as channels whose trajectory can be outside of a single plane. This paper introduces the use of three-dimensional (3D) printed soluble wax as cast molds for rapid fabrication of truly arbitrary microfluidic polydimethylsiloxane (PDMS) channels that are not achieved through typical soft lithography. The molds are printed directly from computer-aided design files, followed by simple dissolution using a solvent after molding PDMS, making rapid prototyping of microfluidic devices possible in hours. As part of the fabrication method, the solubility of several build materials in solvents and their effect on PDMS were investigated to remove the 3D-printed molds from inside the replicated PDMS microfluidic channels without damage. Technology limits, including surface roughness and resolution by comparing the designed channels with fabricated cylindrical channels with various diameters, are also characterized. We reproduced a 3D image of an actual human cerebral artery as cerebral artery-shaped PDMS channels with a diameter of 240  μ m to prove the developed fabrication technique. It was confirmed that the fabricated vascular channels were free from any leakage by observing the fluorescence fluid fill.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app