Read by QxMD icon Read


Wonwhi Na, Jinsung Kim, Hoyoon Lee, Byeongmin Yoo, Sehyun Shin
Even though microfluidics has been successfully used in minimizing complicated and onerous processes, the pumping and tubing systems used with it are yet undeveloped and need immediate development. The present study developed a fluttering bar-driven micropump, mounted on a polydimethylsiloxane microfluidic system. The pump consists of a rectangular ferromagnetic bar and a fan-shaped chamber with an inlet and outlet. Through various experiments, the net flow was examined as a function of chamber shape, inlet and outlet channel location, rotating center of the magnet, and rotational speed...
January 2018: Biomicrofluidics
Shamim M Ahmmed, Naureen S Suteria, Valeria Garbin, Siva A Vanapalli
The transport of deformable objects, including polymer particles, vesicles, and cells, has been a subject of interest for several decades where the majority of experimental and theoretical studies have been focused on circular tubes. Due to advances in microfluidics, there is a need to study the transport of individual deformable particles in rectangular microchannels where corner flows can be important. In this study, we report measurements of hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a linear microchannel with a square cross-section...
January 2018: Biomicrofluidics
Jun Yuan Chan, Aminuddin Bin Ahmad Kayani, Mohd Anuar Md Ali, Chee Kuang Kok, Burhanuddin Yeop Majlis, Susan Ling Ling Hoe, Marini Marzuki, Alan Soo-Beng Khoo, Kostya Ken Ostrikov, Md Ataur Rahman, Sharath Sriram
The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell...
January 2018: Biomicrofluidics
Saeed Rismani Yazi, Reza Nosrati, Corey A Stevens, David Vogel, Carlos Escobedo
Magnetotactic bacteria (MTB) migrate in complex porous sediments where fluid flow is ubiquitous. Here, we demonstrate that magnetotaxis enables MTB to migrate effectively through porous micromodels. Directed MTB can circumvent curved obstacles by traveling along the boundaries and pass flat obstacles by repeatedly switching between forward and backward runs. Magnetotaxis enables directed motion of MTB through heterogeneous porous media, overcoming tortuous flow fields with local velocities as high as 250  μ m s-1 ...
January 2018: Biomicrofluidics
A Dawson, C Dyer, J Macfie, J Davies, L Karsai, J Greenman, M Jacobsen
[This corrects the article DOI: 10.1063/1.4964813.].
January 2018: Biomicrofluidics
Amir Reza Peimani, Georg Zoidl, Pouya Rezai
The zebrafish is a lower vertebrate model organism offering multiple applications for both fundamental and biomedical research into the nervous system from genes to behaviour. Investigation of zebrafish larvae's movement in response to various stimuli, which involves the dopaminergic system, is of interest in the field of sensory-motor integration. Nevertheless, the conventional methods of movement screening in Petri dishes and multi-well plates are mostly qualitative, uncontrollable, and inaccurate in terms of stimulus delivery and response analysis...
January 2018: Biomicrofluidics
Hamed Haddadi, Hamed Naghsh-Nilchi, Dino Di Carlo
Label-free separation of viable cancer cells using vortical microfluidic flows has been introduced as a feasible cell collection method in oncological studies. Besides the clinical importance, the physics of particle interactions with the vortex that forms in a wall-confined geometry of a microchannel is a relatively new area of fluid dynamics. In our previous work [Haddadi and Di Carlo, J. Fluid. Mech. 811 , 436-467 (2017)], we have introduced distinct aspects of inertial flow of dilute suspensions over cavities in a microchannel such as breakdown of the separatrix and formation of stable limit cycle orbits for finite size polystyrene particles...
January 2018: Biomicrofluidics
Euna Ko, Van-Khue Tran, Yanfang Geng, Min Ki Kim, Ga Hyun Jin, Seong Eun Son, Won Hur, Gi Hun Seong
Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules...
January 2018: Biomicrofluidics
Hua Li, Daewoo Han, Giovanni M Pauletti, Andrew J Steckl
Increasing numbers of animals are diagnosed with thromboembolism, requiring anticoagulation treatment to prevent thrombotic events. Frequent and periodic coagulation monitoring is critical to ensure treatment effectiveness and patient safety by limiting blood coagulation ability within the desired therapeutic range. Point-of-care diagnostics is an ideal candidate for frequent coagulation monitoring due to rapid test results and no need for laboratory setting. This article reports the first utilization of no-reaction lateral flow assay (nrLFA) device for simple and low-cost animal blood coagulation monitoring in resource-limited setting...
January 2018: Biomicrofluidics
Dongyang Cai, Qiaolian Yi, Chaohua Shen, Ying Lan, Gerald Urban, Wenbin Du
The full potential of microfluidic techniques as rapid and accurate methods for the detection of disease-causing agents and foodborne pathogens is critically limited by the complex sample preparation process, which commonly comprises the enrichment of bacterial cells to detectable levels. In this manuscript, we describe a microfluidic device which integrates H-filter desalination with positive dielectrophoresis (pDEP) for direct enrichment of bacterial cells from physiological samples of high conductivity and viscosity, such as cow's milk and whole human blood...
January 2018: Biomicrofluidics
Justas Dauparas, Debasish Das, Eric Lauga
Recent experiments proposed to use confined bacteria in order to generate flows near surfaces. We develop a mathematical and a computational model of this fluid transport using a linear superposition of fundamental flow singularities. The rotation of a helical bacterial flagellum induces both a force and a torque on the surrounding fluid, both of which lead to a net flow along the surface. The combined flow is in general directed at an angle to the axis of the flagellar filament. The optimal pumping is thus achieved when bacteria are tilted with respect to the direction in which one wants to move the fluid, in good agreement with experimental results...
January 2018: Biomicrofluidics
Chun-Wei Lee, Fan-Gang Tseng
In recent years, Surface Enhanced Raman Scattering (SERS) has been widely applied to many different areas, including chemical analysis, biomolecule detection, bioagent diagnostics, DNA sequence, and environmental monitor, due to its capabilities of unlabeled fingerprint identification, high sensitivity, and rapid detection. In biomicrofluidic systems, it is also very powerful to integrate SERS based devices with specified micro-fluid flow fields to further focusing/enhancing/multiplexing SERS signals through molecule registration, concentration/accumulation, and allocation...
January 2018: Biomicrofluidics
Ting-Yen Wei, Tzung-Hai Yen, Chao-Min Cheng
Acute pesticide intoxication is a common method of suicide globally. This article reviews current diagnostic methods and makes suggestions for future development. In the case of paraquat intoxication, it is characterized by multi-organ failure, causing substantial mortality and morbidity. Early diagnosis may save the life of a paraquat intoxication patient. Conventional paraquat intoxication diagnostic methods, such as symptom review and urine sodium dithionite assay, are time-consuming and impractical in resource-scarce areas where most intoxication cases occur...
January 2018: Biomicrofluidics
Harpreet Matharoo, Mohammadhossein Dabaghi, Niels Rochow, Gerhard Fusch, Neda Saraei, Mohammed Tauhiduzzaman, Stephen Veldhuis, John Brash, Christoph Fusch, P Ravi Selvaganapathy
Respiratory distress syndrome (RDS) is one of the main causes of fatality in newborn infants, particularly in neonates with low birth-weight. Commercial extracorporeal oxygenators have been used for low-birth-weight neonates in neonatal intensive care units. However, these oxygenators require high blood volumes to prime. In the last decade, microfluidics oxygenators using enriched oxygen have been developed for this purpose. Some of these oxygenators use thin polydimethylsiloxane (PDMS) membranes to facilitate gas exchange between the blood flowing in the microchannels and the ambient air outside...
January 2018: Biomicrofluidics
Shuo Wang, Andrew Bruning, Oju Jeon, Fei Long, Eben Alsberg, Chang Kyoung Choi
Alginate microgels are widely generated by ionic crosslinking methods, but this method has limitations in controlling the microgel degradation and generating non-spherical microgels. By employing oxidized methacrylated alginate (OMA) that is degradable and photocrosslinkable, we have successfully photocrosslinked monodisperse OMA microgels and demonstrated the feasibility to generate discoid alginate microgels. However, several technical issues obstructed our opto-microfluidic method from being a useful technique...
January 2018: Biomicrofluidics
Kyunghun Kang, Sangwoo Oh, Hak Yi, Seungoh Han, Yongha Hwang
The field of complex microfluidic channels is rapidly expanding toward channels with variable cross-sections (i.e., beyond simple rounded channels with a constant diameter), as well as channels whose trajectory can be outside of a single plane. This paper introduces the use of three-dimensional (3D) printed soluble wax as cast molds for rapid fabrication of truly arbitrary microfluidic polydimethylsiloxane (PDMS) channels that are not achieved through typical soft lithography. The molds are printed directly from computer-aided design files, followed by simple dissolution using a solvent after molding PDMS, making rapid prototyping of microfluidic devices possible in hours...
January 2018: Biomicrofluidics
Xiaonan Xu, Haojun Yuan, Ruyuan Song, Miao Yu, Ho Yin Chung, Youmin Hou, Yuhe Shang, Hongbo Zhou, Shuhuai Yao
Droplet microfluidics, which involves micrometer-sized emulsion droplets on a microfabricated platform, has been demonstrated as a unique system for many biological and chemical applications. Robust and scalable generation of monodisperse droplets at high throughput is of fundamental importance for droplet microfluidics. Classic designs for droplet generation employ shear fluid dynamics to induce the breakup of droplets in a two-phase flow and the droplet size is sensitive to flow rate fluctuations, often resulting in polydispersity...
January 2018: Biomicrofluidics
Zeina S Khan, Julianna M Santos, Fazle Hussain
It has been hypothesized that highly metastatic cancer cells have softer nuclei and hence would travel faster through confining environments. Our goal was to prove this untested hypothesis for prostate cells. Our nuclear creep experiments using a microfluidic channel with a narrow constriction show that stiffness of aggressive immortalized prostate cancer nuclei is significantly lower than that of immortalized normal cell nuclei and hence can be a convenient malignancy marker. Nuclear stiffness is found to be the highest for cells expressing high levels of lamin A/C but lowest for cells expressing low lamin A/C levels...
January 2018: Biomicrofluidics
Christopher George Uhl, Vladimir R Muzykantov, Yaling Liu
Therapeutic delivery from microvasculature to cancerous sites is influenced by many factors including endothelial permeability, vascular flow rates/pressures, cancer secretion of cytokines and permeabilizing agents, and characteristics of the chosen therapeutics. This work uses bi-layer microfluidics capable of studying dye and therapeutic transport from a simulated vessel to a cancerous region while allowing for direct visualization and quantification of endothelial permeability. 2.5 to 13 times greater dye transport was observed when utilizing small dye sizes (FITC) when compared to larger molecules (FITC-Dextran 4 kDa and FITC-Dextran 70 kDa), respectively...
January 2018: Biomicrofluidics
Amir Hossein Raffiee, Sadegh Dabiri, Arezoo M Ardekani
In this paper, we study the dynamics of deformable cells in a channel flow of Newtonian and polymeric fluids and unravel the effects of deformability, elasticity, inertia, and size on the cell motion. We investigate the role of polymeric fluids on the cell migration behavior and the performance of inertial microfluidic devices. Our results show that the equilibrium position of the cell is on the channel diagonal, in contrast to that of rigid particles, which is on the center of the channel faces for the same range of Reynolds number...
November 2017: Biomicrofluidics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"