Add like
Add dislike
Add to saved papers

Identification of novel genes in aging osteoblasts using next-generation sequencing and bioinformatics.

Oncotarget 2017 December 27
During the aging process, impaired osteoblastic function is one key factor of imbalanced bone formation and age-related bone loss. The aim of this study is to explore the differentially expressed genes in normal and aged osteoblasts and to identify genes potentially involved in age-related alteration in bone physiology. Based on next generation sequencing and bioinformatics analysis, 12 differentially expressed microRNAs and 22 differentially expressed genes were identified. Up-regulation of miR-204-5p was validated in an array of osteoporotic hip fracture in the Gene Expression Omnibus database (GSE74209). The putative targets for miR-204-5p were Kruppel-like factor 7 ( KLF7 ) and SRY-box 11 ( SOX11 ). Ingenuity Pathway Analysis identified SOX11 , involved in osteoarthritis pathway and differentiation of osteoblasts, together with miR-204-5p, a potential upstream regulator, suggesting the critical role of miR-204-5p- SOX11 regulation in the aging process of human bones. In addition, as semaphorin 3A ( SEMA3A ) and ephrin type-A receptor 5 ( EPHA5 ) were involved in nervous system related biological functions, we postulated a potential linkage between SEMA3A , EPHA5 and development of neurogenic heterotopic ossification. Our findings implicate new candidate genes in the diagnosis of geriatric musculoskeletal disorders, and provide novel insights that may contribute to the elaboration of new biomarkers for neurogenic heterotopic ossification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app