Add like
Add dislike
Add to saved papers

Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating.

Materials 2018 January 23
Microwave (MW) heating has received attention as a new heating source for various industrial processes. Some materials are expected to be a more effective absorber of MW, and graphite is observed as a possible candidate for high-temperature application. We investigated the dependence of the aspect ratio of graphite fibers on both their heating behavior and permittivity under a 2.45 GHz MW electric field. In these experiments, both loss tangent and MW heating behavior indicated that the MW absorption of conductive fibers increases with their aspect ratio. The MW absorption was found to be well accounted for by the application of a spheroidal model for a single fiber. The absorption of graphite fibers decreases with increasing aspect ratio when the long axis of the ellipsoid is perpendicular to the electric field, whereas it increases with the aspect ratio when the long axis is parallel to the electric field. The analytical model indicated that MW heating of the conductive fibers is expected to depend on both the shape and arrangement of the fibers in the electric field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app