Add like
Add dislike
Add to saved papers

An improved method for detecting torpor entrance and arousal in a mammalian hibernator using heart rate data.

We used electrocardiogram (ECG) telemeters to measure the heart rate of hibernating Ictidomys tridecemlineatus (thirteen-lined ground squirrel). An increase in heart rate from 2.2 to 5 beats min-1 accurately identified arousal from torpor before any change in body temperature was detected. Variability in raw heart rate data was significantly reduced by a forward-backward Butterworth low-pass filter, allowing for discrete differential analysis. A decrease in filtered heart rate to 70% of maximum values in interbout euthermia (from approximately 312 to 235 beats min-1 ) accurately detected entrance into torpor bouts. At this point, body temperature had fallen from 36.1°C to only 34.7°C, much higher than the 30°C typically used to identify entrance. Using these heart rate criteria allowed advanced detection of entrance and arousal (detected 51.9 and 76 min earlier, respectively), compared with traditional body temperature criteria. This method will improve our ability to detect biochemical and molecular markers underlying these transition periods, during which many physiological changes occur.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app