Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Establishment of an easy and straight forward heparinase protocol to analyse circulating and myocardial tissue micro-RNA during coronary artery-bypass-graft surgery.

Scientific Reports 2018 January 23
Coronary artery-bypass-graft (CABG) surgery is associated with myocardial damage and increased blood concentrations of circulating microRNAs (miRNA). However, whether and to what extent these miRNAs relate to cardiac tissue miRNA expression have not yet been explored. Since plasma miRNA quantification in samples from cardiopulmonary bypass (CPB) patients is severely hampered by heparin, we established and validated successfully a protocol to reliably measure miRNA in 49 heparinized patients undergoing CABG so as to investigate the relationship between circulating and right atrial miRNAs. Plasma and right atrial expression of miR-1, miR-133a, miR-423-5p, and miR-499 were measured before and after CPB, as well as miRNAs in plasma 24 h thereafter. All plasma miRNAs increased significantly with surgery while cardiac tissue expression of only miR-133a (1.4-fold; p = 0.003) and miR-423-5p (1.3 fold; p = 0.025) increased as well. Right atrial and plasma miR-133a expression correlated positively before CPB (r = 0.288, p = 0.045) but miR-499 expression inversely (r = -0.484, p = 0.0004). There was a strong association between plasma miR-133a and miR-499 concentrations and postoperative troponin I concentrations, the marker for myocardial damage. Increased myocardial miR-133a and miR-423-5p expression together with unchanged miR-1 and miR-499 expression might suggest active release of these miRNAs rather than their origin from damaged cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app