Add like
Add dislike
Add to saved papers

Properties of Antibiotic-Resistant Bacteria Isolated from Onsite Wastewater Treatment Plant in Relation to Biofilm Formation.

The aim of the present study was to determine some properties of antibiotic-resistant bacterial strains isolated from onsite wastewater technology in relation to biofilm formation, e.g., autoaggregation and motility. Additionally, biosurfactant production by the isolates was also evaluated. The ability of selected strains to develop a biofilm was assessed by using the crystal violet method, which allows to indirectly quantify the attached bacterial biomass (live, dead cells, and polysaccharides as well). Obtained results showed that 19 of the analyzed strains were able to produce biofilm after 72 h of incubation. The low values of surface tension in the range between 28 and 36 mN/m were observed in the bacteria, which are not able to produce biofilm or be classified as weak biofilm producers. Among biofilm-forming strains the highest autoaggregation index was observed for Mycobacterium brumae and Bacillus alcalophilus. Noteworthy, that some strains capable of biofilm formation showed no aggregation abilities or were characterized by low autoaggregative properties. The results of visual autoaggregation assay showed no visible flocs after given time of incubation. The results from motility test demonstrated that most of the analyzed strains were motile. Noteworthy, that up to now literature data about physiology, biofilm formation, and autoaggregative capabilities of bacteria isolated from onsite wastewater technology are very limited and this paper gives the information on the antibiotic-resistant bacteria with ability to form biofilm. Thus, the present study points to develop novel bioinocula in antibiotic degradation and to reach novel biofilm-dispersing agents produced by various bacteria that can be used as disinfectants or surface-coating agents to prevent microbial surface colonization and biofilm development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app