Add like
Add dislike
Add to saved papers

Synthesis of a poly(ester) dendritic β-cyclodextrin derivative by "click" chemistry: Combining the best of two worlds for complexation enhancement.

Carbohydrate Polymers 2018 March 16
In spite of the progress in the cyclodextrins chemistry, the synthesis of monodisperse derivatives with a defined degree of substitution is still a challenge. In this work we present a novel dendritic material produced by combining βCD and second generation poly(ester) dendrons. The selective attachment of dendrons in the seven positions of the βCD-primary face was performed through a CuAAC click reaction, which along with a very simple work-up, allowed obtaining the monodisperse material in very high yields. The product showed a great aqueous solubility and an in vitro non-toxic profile. The enhanced complexation potential of the product was evidenced through the formation of an inclusion complex with albendazole, which presented a Kc  = 29636.17 M-1 . In this system, albendazole was 45 times more water-soluble in comparison to the complex albendazole-native βCD. All these features make the dendritic material very attractive for further applications in the formulation and drug delivery fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app